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Quadriwave lateral shearing interferometry (QWLSI) is a well-defined and robust wavefront sensing technique
used in various fields such as laser beam qualification, lens or surface testing, bio-imaging, and other advanced
optical systems. Despite its strengths, a notable limitation is its inability to measure the edges of the optics
because of the non-interfering region in the shearing structure. We present a newly developed method for
obtaining extended-aperture wavefront information using QWLSI. The proposed method involves advanced al-
gorithms that analyze the interference patterns from QWLSI using the inverse shearing equation to create four
sub-aperture wavefronts up to the edge. These wavefronts are stitched to reconstruct the input wavefront. This
technique was successfully applied in testing of a 1.2 m diameter aspheric mirror using QWLSI with infrared laser
at 10.6 pm wavelength. The measurement error outside the interferogram area was less than 0.2 pm rms
compared to that of the commercially visible interferometer. This error is sufficiently small, supporting the
application of this method to the measurement of surfaces during the grinding and early polishing steps. This
feature is particularly useful for the large optics, such as mirrors for Giant Magellan Telescope and Extreme Large

Telescope.

1. Introduction

Quadriwave lateral shearing interferometry (QWLSI) is a well-
defined and robust wavefront sensing technique widely used in
various fields, such as laser beam qualification, lens or surface testing,
bioimaging, and other advanced optical systems [1-10]. This
multi-interference lateral shearing interferometry (LSI) generates four
space-shearing wavefronts to obtain interference signals [11]. This
unique characteristic offers substantial advantages, such as a wide dy-
namic range and high robustness to environmental effects in wavefront
measurements, as it is a self-referencing interferometer [12-14].
Therefore, it can overcome the narrow dynamic range of commercial
interferometers while maintaining good precision.

Recently, Song et al. developed a novel measurement technique
called intermediate surface form error metrology (ISFEM) utilizing a
commercial QWLSI sensor [15]. The method could assess the surface
form error of large-scale optics, specifically those measuring 1.1 m,
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during grinding fabrication. The approach served as a bridge between
rough surface measurements performed with laser trackers and inter-
ferometric measurements used for polished surfaces. However, it fails to
capture the wavefront error (WFE) in non-interfering regions outside the
shearing interferogram. The QWLSI sensor, with a shearing ratio of
approximately 2-3 %, leads to data loss spanning approximately 10-15
mm within the aperture for optics of approximately 1 m in size. To
address this, Song et al. expanded the physical aperture size, which
increased material expenses and weight.

Numerous studies have focused on expanding WFE information in
non-interfering areas in LSI. Elster et al. proposed a one-dimensional
wavefront reconstruction method based on the difference measure-
ments from two shearing interferograms [16-18]. The algorithm can
reconstruct any wavefront exactly up to an arbitrary constant. Okuda
et al. developed a modal method using a new Zernike polynomial suit-
able for a shearing interferogram from a single-directional LSI [19].
Subsequently, Liu et al. improved this method to multidirectional LSI
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[20]. Alternatively, Servin et al. presented an inverse shearing method
using least-square fitting to solve the ill-posed problem [21,22]. The
partial loss in the near-boundary region was constructed from the
extracted slopes and integrated wavefronts using an inverse shearing
method based on LSI through directional shearing. However, the studies
above cannot be directly applied to the reconstruction of WFE using
QWLSI sensors. This is because QWLSI sensors create four simulta-
neously sheared wavefronts, and the interferogram is formed only
within the area where these wavefronts overlap.

This study introduces a novel technique for wavefront reconstruction
in the non-interfering areas of a QWLSI sensor. This method involves
multiple aperture functions and the corresponding inverse shearing
equation rooted in the fundamental principles of shearing interferom-
etry [11]. Because QWLSI provides 4-directional slopes from a single
interferogram, the proposed method generates four sub-aperture
wavefronts stitched to obtain the final extended wavefront. It could be
providing the spatially best possible wavefront reconstruction from
available interferogram of QWLSI. Section 2 explores the approach
behind our proposed technique. Section 3 focuses on the validation of
the proposed method using computational simulations. Finally, Section
4 discusses the application of this method in measuring a 1.2-m aspheric
mirror, comparing its outcomes with those obtained from standard
commercial interferometry.

2. Principle
2.1. Aperture function of the QWLSI

QWLSI consists of an image detector and a unique diffraction grating,
known as a modified Hartman mask (MHM) [4,23]. When light enters
this system, it diffracts following the 4-directional diffraction vectors, as
shown in Fig. 1. The diffraction of MHM can be expressed as 4-direc-
tional +1-order lights approximately. Here, Wy, W.;,;, Wi _1, and
W.;,_; mean the input wavefront (W) sheared in +x or -x directions with
+y or -y direction shifts.

The diffracted four sheared wavefronts are tilted with an angle
64 relative to the optical axis, as follows:

Won = |W 5 g +mT,+nT,| -A 5 §
o = x—mz,y—ny | +ml+nT, X—mzy—nz), mn
€ {_ 1 ’ 1 }
(€)]
where m and n represent the indices of the diffraction order and T, and

T, denote the tilted wavefronts along the x and y axes, respectively.
Variable S corresponds to twice the shearing length of the QWLSI. The A

Phase retarder

/
AT

Detection
plane

Wavefront

Fig. 1. Schematic layout of the quadriwave lateral shearing interferom-
etry (QWLSI).
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(x,y) is the aperture function has the following properties:

1 if W(x,y) is defined

Alx,y) = {() if W(x,y) is not defined " @

The variables depend on the diffraction angle (64) and distance of the
wavefront propagation from the MHM (z,), as follows:

T, = xtan (ﬁ>
X \/E b
T, = ytan (%) , 3

S =2ztan| — |.
: (ﬁ

The detection plane is positioned within the Fresnel diffraction re-
gion where the four sheared wavefronts overlap to produce an inter-
ferogram, as shown in Fig. 2(a). This interferogram can be modulated to
generate six sets of phase differences as follows:

Dy =Wy —W_y; = AW, (x,y — §/2) + 2T,

Dy=W,-W_ _, = AWH)-(XJ) + 2T, + 2T,,
Dy =W, — W, = AW,(x — §/2,y) + 2T,, @
D4 = W—l,l - W—l,—l = AW)(X+ S/Z,y) + 2Ty7
Ds =Wy, — W_i; = AW, (x,y) + 2T, — 2T,
D5 = Wl.—l — W—l.—l = AWX(X7_Y +S/2) + 2T)

where AW,, AWy represent the phase differences from shearing along the
x- and y-direction, and AWy, AW,., represent the corresponding upper
right (/' /) and lower right (\\ \\) diagonal shearing, respectively. The
tilted wavefronts T, and Ty introduce the carrier frequency of the fringe,
and this periodic pattern modulates the phase differences. If I denotes
the amplitude of the input wavefront, the modulated interferogram for
the QWLSI sensor can be expressed as follows:

I(x,y) = { g Iycos (i—ﬂDl)

'Ain (-x7 y)7 (5)

Ain(x,y):ﬂA(x—m;y—ng) m,n € {~1,1}. ©

Here, A;, indicates the aperture function related to the region of the
interferogram where the four sheared wavefronts overlap, as indicated
by the yellow line in Fig. 2(a). In addition, we define the near boundary
region, indicated as Ay, which is outside of A;; and corresponds to A N
(Ai,,)C as shown in Fig. 2(b). The wavefront information is reconstructed
within A;, only, whereas the wavefront in Ay is lost.

2.2. Calculation of partial wavefront slope

Let V, and V, be the partial wavefront slopes in the x and y di-
rections and V., and V,_, be the corresponding upper right (/* /) and

Auut (x! y)
W_i1 Wia
Ain (x' y)
A(x,
Wi W, ()
(a) (b)

Fig. 2. (a) Diagram of the QWLSI interferogram image in a circular aperture
case and (b) area division of input aperture, A(x,y), with A;; and Agye
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lower right (\\ \\) diagonal ones. The Fourier method was then used to
obtain partial wavefront slopes from the interferogram, as described in
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shearing equation”.
11
sub?

Next, we define a new subaperture A_,, with respect to Eq. (13), as

Egs. (7) and (8). follows:
A ag[7(HL)] _ (AWix,y = S/2) | AW(x,y+5/2)
x = ﬂ f'Am(xsy) - S + S 'Am(x7y)a (7)
2 arg[7 ' (Hyy)] (AW, (x—S/2,y) | AW,(x+S/2,y)
y*%fAm(xvy) - S + S Am(xvy)s
and Al _ s S
s (6Y) = |Ain(x =S,y —S) N A, XYy a4
R A AWy (x,y
Vi = ST Wl < BV,
d S S 8) where index (1,1) is the sheared area in the same direction as Wy ;. Fig. 3
v - 4 arg [7 " (H,y)] An(xy) = AW y(x,y) An(x,) shows an example diagram explaining the subaperture Asll'li, from the
T on V28 e V28 e inverse shearing equation for the first quadrant subaperture wavefront.

where arg indicates the argument function and .7 ~! signifies the inverse
Fourier transformation. 1 is the wavelength of the light, and H.,, H ),
Hyy, and H,., are directional harmonics terms. This method separates
the harmonic terms of the carrier frequency in the Fourier domain. The
regions corresponding to the harmonics of the partial slopes are sampled
using spatial windowing. Subsequently, each harmonic term is subjected
to an inverse Fourier transformation and divided by the shearing length.
The x + y and x - y diagonal partial slopes are uniquely represented by
the difference in wavefronts in those directions and a shearing length of
/28, whereas the partial slopes in the x- and y-directions are entangled.
Therefore, we focus on obtaining the partial wavefront slopes in the two
diagonal directions instead of in the x- and y-directions.

We reconstruct wavefront W, by integrating V., and V,_, obtained
from Eq. (8) using the carrier wave or the modified Southwell Zonal
method [24,25]. W, is constrained within A;, or is expressed using Eq.

(9).
W, =~ W-Ap ©

2.3. Inverse shearing equation
Let (x1, y1) be the element of Ay, which satisfies the following:

N
Xo=X1 =75, Yo=DY1 — 5

S
2 2 (X0, 0) € Ain (10)

According to Eq. (4), the wavefront phase difference at a point in the
first quadrant of Ajy, is

AW,y (x0,¥0) = Wii(x0,¥0) — Woi—1(Xo, Yo)

N N S S an
= W(x(, R —§> - W(Xo +§,y0 +§>

Then, the wavefront at (x;, y;) can be calculated as

S S
W(x,y1) = Wxp = S,y1 = 8) — AW,y <X1 N —5) 12)
As (x; =S, y1 —S) and (x; =S /2, y; —S /2) are elements of A, Eqs.
(12) becomes

S N
Wi, y1) = We(x) =S, 31 —8) — AW, (xl N *§> 13)
Thus, we can obtain the wavefront at any points in the first quadrant
of Ay using the known information of reconstructed wavefront, Wy, and
the wavefront phase difference, AWy, at any points in the first quad-
rant of Aj,. Hence, in this paper, Eq. (13) is referred to as the “inverse

Similarly, we can calculate the wavefront at a point in any quadrant of
the input aperture A or

Wi (5.9) = | Wi (r—mS,y—nS) ~mAW., (

e{1,-1}

N N mn
7’ni7y7n§):| 'Asuvb ('xfy)? m,n

(15)

where W,i' indicates the wavefront of the subaperture defined by the

four different quadrants of AT;' as follows:

S S
Al (x,y) = |Ain(x—mS,y —nS) NA;, <x—m§,y—n§>}, m,n € {l,—1}
(16)

We then reconstruct the extended wavefront (W,,,) by stitching the
four sub-aperture wavefronts, as shown in Fig. 4 [26-29]. The total
stitched area is calculated as follows:

W = W-Aeu(x,y), 17)

A =A% (), mone{1,-1}. as)

At this stage, the aperture function A, is very close to A but not the
same because we use four diagonal shearing wavefronts, as shown in
Fig. 4. We calculated the amount of information lost in our method,
depending on the shearing ratio. Fig. 5 shows the ratio of the recon-
structed area to the input aperture as the shearing ratio changes from
0 to 0.1. The blue and red lines represent the results with the proposed
method and original QWLSI, respectively. Our method retains a recon-
struction ratio of more than 99.9 %, whereas the original QWLSI drops
to approximately 77.5 % at the 0.1 shearing ratio. This implies that most
of the input wavefront information can be obtained, and a small amount
of lost information can be recovered using interpolation without sig-
nificant accuracy degradation.

3. Simulation

Computational simulations were conducted to validate the proposed
method. We created a simulated input wavefront (W) using MAT-
LAB®’s peaks function, as depicted in Fig. 6(a). This wavefront was
scaled to achieve a peak-to-valley measurement of 25.85 pm and rms of
4.18 pm, which is sufficiently large for detection by a QWLSI sensor. The
wavefront image was designed with a diameter of 7.5 mm and a central
hole measuring 1.1 mm. Fig. 6(b) shows the simulated interferogram
(Isim) obtained using Eqgs. (2)-(5). The QWLSI wavefront sensor
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Wo(x =S,y =5)Ain

1,1
A (X )
=Apx=Sy=95)

S S
Ndim|* =20 =5

N S
AVl/x-(-y x_ily_i “Ain
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Extended region

X

Input aperture

Fig. 3. Diagram explaining obtaining Wsl,;}, using the inverse shearing equation.

Phase
stitching

Unreconstructed
region

Fig. 4. Four sub-apertures generated by the inverse shearing equation and their
stitching process to obtain input wavefront.

100

== QOriginal method

95 Proposed method 7

90 - T

85 b

Reconstructed aperture (%)

80 1

75 I I I I I I 1 I I
0 0.01 0.02 0.03  0.04 0.05 0.06 0.07 0.08  0.09 0.1

shearing ratio

Fig. 5. Comparison of the area ratio of the reconstructed apertures from the
original QWSLI sensor (red line) and our proposed method (blue line) with
respect to the shearing ratio (0-0.1).

specifications are outlined in Table 1. Iy, was then displayed within A;,
which has a diameter of approximately 97 % of the total aperture area.

We derive the reconstructed wavefront, W,, depicted in Fig. 7(a),
using a modified zonal integration method applied to Iy, with

Wsim (%, y)

Lgim (x,
PV: 25.85 um, RMS: 4.18 pm sim (%)

Y (Pixels)
Y (Pixels)

-200 -100 0 100 200

0
X (Pixels) X (Pixels)

(a) (b)

Fig. 6. (a) Simulated wavefront and (b) theoretical interferogram.

Table 1

Specification of QWLSI wavefront sensor.
Simulation parameters Value
Wavelength (1) 10.6 pm
Entrance pupil diameter 8.16 mm
Grating period of the MHM (p) 68 pm
Distance between MHM and detector (z;) 1.5 mm
Number of calculation pixels 480 x 480 pixels
Shearing length (S) 235 pm

adjustments for the shearing length. Consequently, W, is restricted to the
Ajn area. The black line represents the size of the initial wavefront, Wg;y,.
Fig. 7(b) presents the extended wavefront, We,;, which was generated by
merging the four sub-aperture wavefronts using Eq. (14). In this calcu-
lation, the phase translation of each sub-aperture adopted the
triangulation-based cubic method. The stitching algorithm used the least
square method by controlling piston and tilt of Zernike polynomials
[27]. Fig. 7(c) shows the miss-match map of the stitching algorithm.
Fig. 7(d) illustrates the discrepancy between Wy, and Wy, which is a
0.13 pm rms or 3 % of the initial wavefront. This small deviation sug-
gests that the QWLSI sensor is suitable for surface-error measurements
during grinding and early polishing steps. This error includes both sys-
tematic errors in the QWLSI hardware and the post-processing error of
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Fig. 7. (a) Reconstructed wavefront (W,), (b) extended wavefront (W,,,), (c) miss-match map of the stitching,

and Wey.

our proposed method. In this paper, we focus on the post-processing
technique of which error could stem from factors such as Fourier
demodulation, zonal integration, or image translation within a finite
matrix. Therefore, these aspects can be further improved through
additional research. For example, if we use a higher number of sampling
points, the interpolation error can be reduced, which can lead to more
accurate sub-aperture positioning and improved stitched results for the
extended wavefront.

4. Experiment

We employed an ISFEM instrument integrated with a QWLSI wave-
front sensor (SID4-DWIR, Phasics Co.) to measure a ellipsoid mirror with
a 1.2-m diameter[15]. This sensor comprises a 640 x 480 pixels
bolometer and operates with a 10.6 pm wavelength laser. In our previ-
ous study [15], the measurement achieved an accuracy of approximately
75 nm rms, with the specifications presented in Table 1.

Developed initially for assessing mirror surfaces during the grinding
step, our setup, depicted in Fig. 8, incorporates a null system for
generating an aspheric wavefront corresponding to the ellipsoid mirror,
with a 3.8 m radius of curvature and —0.987 conic constant. The null
system was meticulously designed and manufactured, integrating
alignment datums to guarantee the reference wavefront of the aspheric
surface. In this step, ISFEM was applied to measure the surface during
the early polishing step because the measurement result needed to be
compared to that of commercial interferometry.

We obtained an interferogram from the QWLSI wavefront sensor
used in the ISFEM, as shown in Fig. 9(a). In this testing, we ensured a
signal-to-noise ratio (SNR) of the interferogram above 20 dB to mitigate
the influence of noise [15]. The shearing ratio of QWLSI is approxi-
mately 3 %, which corresponds to the wavefront loss width of 17.5 mm
for 1.2 m diameter, as demonstrated in Fig. 9(b).

Fig. 10(a) shows the reconstructed surface form error obtained using
the original method. Only the interferogram area could be recon-
structed. Fig. 10(b) shows the extended surface form error obtained
using our proposed method. The area of A, was well filled to reproduce

Null
Lens

Objective
Lens

AN

Enk:

Mirror
under test

(@

Fig. 8. (a) Schematic of the ellipsoid mirror surface test using intermediate
surface form error metrology (ISFEM) and (b) a photograph of the test setup.

(©) (d)

and (d) residual map between Wy, of Fig. 6(a)

SUT
—
Physical aperture
diameter
:1.2m
Measured
diameter
:1.165 m
Wavefront loss
width
ek H :17.5 mm
(b)

Fig. 9. (a) Interferogram of the 1.2 m ellipsoid mirror from QWLSI sensor
(Yellow dot line) and (b) schematic of the wavefront loss width.

the input wavefront, which is close to the result of a commercial inter-
ferometer (PhaseCam 5030 from 4D Technology Co.) with a computer-
generated hologram (CGH), as shown in Fig. 10(c). Fig. 10(d) displays
the miss-match map with the stitching error of 0.12 pm rms.

To assess the accuracy of the reconstructed extended wavefront, the
surface profiles at r = 594 mm in the A,y region are compared in Figs. 10
(b) and (c), as illustrated in Fig. 11. Both profiles exhibit similar peaks
and troughs, aligning closely with a peak-to-valley measurement of 0.77
and 0.16 pm rms. This level of difference is on the order of the mea-
surement accuracy of the ISFEM, as reported in our earlier paper [15].
Moreover, this is comparable to the simulated results presented in Fig. 7
(c). Therefore, this error margin can be attributed to the measurement
accuracy of the ISFEM and computational errors, such as those arising
from Fourier demodulation, zonal integration, or image translation
within a limited matrix. This analysis could offer insight into the scale of
measurement errors. However, adopting the absolute evaluation using
closure relations could further improve confidence in QWLSI itself,
which will be carried out in near future [30]. In summary, these findings
confirm the effectiveness of our method in reconstructing the wave-
fronts beyond the QWLSI interferogram region.

5. Conclusions

This paper presents the effectiveness of a newly developed method
for extended wavefront reconstruction in QWLSI. The method involves
advanced algorithms that analyze the interference patterns from QWLSI
using the inverse shearing equation to create four subaperture wave-
fronts. These wavefronts are stitched to reconstruct the input wavefront.
This technique was successfully applied in testing a 1.2 m aspheric
mirror. The measurement error outside the shearing interferogram was
less than 0.2 pm rms compared to that of a commercially visible inter-
ferometer. The small error allowed us to apply this method for surface
measurements during grinding and early polishing. Moreover, it opens
opportunities for using QWLSI in segmented mirror testing, such as
Giant Magellan Telescope mirrors, requiring stringent specifications for
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Fig. 10. Surface form errors measured by (a) ISFEM with the original method, (b) proposed method, (c) commercial interferometer, and (d) miss-match map of

the stitching.
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Fig. 11. Comparison of surface profiles between the visible interferometer and QWLSI results (following the path on the extended region at r = 594 mm).

surface form errors near the aperture boundary.

One drawback of our method is its weakness in obtaining the full-
aperture for the special aperture shape, such as a hexagonal shape of
James Webb Space Telescope (JWST), because the hexagonal vertices
coincide with the unreconstructed region. This problem needs to be
tackled in the future. Fortunately, this issue may be addressed by
employing other multi-LSI techniques, such as three-wave lateral
shearing interferometry (TWLSI) [31], in conjunction with our method.
This approach could prove beneficial in enhancing the throughput of
large optics manufacturing with hexagonal apertures.
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