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A B S T R A C T   

A robust and novel technique for wavefront retrieval from slope data is presented in this paper. A simple 
wavefront with stable error is used as a carrier wavefront for measurement data to wipe out the error peaks 
arising from high-order aberration wavefronts. Several numerical simulations were performed to examine its 
speed, accuracy, and noise immunity. The accuracy of the outcomes outperformed those of prior algorithms 
when reconstructing wavefronts with high order aberration. On the other hand, the proposed technique requires 
additional processing time because it has more tasks. A deformable mirror was then used as a sample for ex-
periments and the results obtained from the developed deflectometry system were compared to those obtained 
from input data of deformable mirror to evaluate the capabilities of the approach in practice.   

1. Introduction 

Wavefront measurement plays a vital role in modern technology. As 
proof, wavefront sensors are commonly employed in various types of 
adaptive optics and ophthalmology applications because of their 
straightforward structure and operating principle [1–4]. A large 
numbers of surface metrology and inspection systems, such as lateral 
shearing interferometers and deflectometry, require the wavefront to be 
reconstructed in the final step to obtain the outcome [5–7]. From a 
mathematical point of view, those systems use a wavefront 
gradient-based measurement method. This integration process needs an 
algorithm to achieve the desired shape, based on its slopes. 

Previously, wavefront derivatives were obtained from measurement 
systems. A mathematical process was conducted to obtain the wavefront 
shape, in a process called wavefront reconstruction [8]. Basically, there 
are two categories of retrieval algorithm, the modal and zonal methods 
[9]. The modal method requires orthogonal basis polynomials like 
Zernike polynomials or Legendre polynomials as a reference to decom-
pose the measurement slopes [10,11]. The zonal method assumes the 
wavefront is a set of height values in a discrete geometry [12–14]. A 
relation between height values and slopes is created as a set of linear 
equations, and phase is directly estimated from measured derivative 
data using a least square method or an iterative technique. 

Besides the two old geometry styles introduced by Fried [12] and 

Hudgin [13], Southwell is acknowledged as one of the most popular 
geometries because of its error propagation [15] and its configuration, 
where the vertical, horizontal slopes and phase points are laid on the 
same position [9] as shown in Fig. 1. However, the original Southwell 
geometry can only deal with low order aberrations, including tilt, 
astigmatism, defocus, coma, and its combination. When reconstructing 
higher order aberrations, truncation error and error peaks often appear 
[16–18]. 

In the past decade, several studies have been published to address 
those problems. Li et al. presented an algorithm which utilized the 
Taylor theorem to analyze and incorporate a greater quantity of gradient 
data in the x and y directions [16]. Pathak and Phan increased the 
number of slopes by adding diagonal derivatives into the integral 
equations [19,20]. Recently, Hui [18] and Linh [17] also improved the 
Southwell geometry to renew the estimated phase equation which is 
depicted in Fig. 1. The former proposed that we can enhance accuracy by 
using the curvature factor [21] along with diagonal and anti-diagonal 
slope values. On the other hand, the latter rearranged the classical 
Southwell’s algorithm to yield a new estimated phase equation with 
better truncation errors and speed. Those approaches can reduce the 
high order aberration error generally, but in reconstruction error there 
are a lot of aberration orders, which have a significantly higher error 
than others. The error peak does not disappear. 

In this paper, we propose a novel and simple approach to reduce the 
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error peak problem of high order aberrations in a wavefront recon-
struction algorithm which can be applied to all type of slope-based 
wavefront sensor such as: deflectometry, Shack-Hartmann wavefront 
sensor and lateral shearing interferometry. A simple wavefront was used 
as a carrier wavefront to easily remove the error peaks in all aberration 
orders. The remainder of this article is organized as follows. An expla-
nation of error peaks and the principle of the carrier wavefront tech-
nique are given in Section 2. The numerical simulations and 
experimental results are provided in Section 3. Finally, discussion and 
conclusions are presented in Section 4. 

2. Theory 

2.1. Wavefront error peak definition 

We start with an explanation of the wavefront error peak and its 
contribution to high order aberrations error. 

To show the definition of error peak, we reconstruct wavefront with 
size of 500 × 500 by Linh algorithms. In Fig. 2(a), some wavefront 
shapes with peak are shown, and Fig. 2(b) presents its residual error 
distribution map after the reconstruction process. It is easy to see that 
the major errors are accumulated in the peak of the original surface. This 

phenomenon also happens in other algorithms when the surface has 
peaks, the slope around peaks area become high slope because of de-
rivative definition. Thus, high slope areas will not be reconstructed 
perfectly. But we must note that not all wavefront aberrations have an 
error map distribution like Fig. 2(b). For example, Fig. 3 shows the phase 
map and the error distribution of function xy. It is apparent that the 
errors are really stable and small. 

When we use the Zernike as a basis function to describe the distorted 
wavefront, it is obvious that there are some aberrations that have a 
greater number of peaks than the others in each order. For example, the 
radial order 3 of Zernike polynomials displayed in Fig. 4(a) have number 
of peak values are 3, 1, 1 and 3 respectively. On the other hand, the 
image illustrated in Fig. 4(b) tells us that the highest value areas of 
Zernike polynomials with radial order 4 are 4, 2, 1, 2, 4, respectively. 

This is the reason why the relative reconstruction errors are not 
linear, as highlighted in Fig. 5. The quantity of peaks in the aberrations 
are not linear increasing corresponding the radial order of Zernike 
polynomials, then the error peak will appear in the relative error results. 

2.2. Wavefront reconstruction by carrier wavefront technique 

We start with a brief description of Southwell’s geometry. As 

Fig. 1. Sampling geometry by: (a) Hudgin: slopes are lay on between 2 phase points, (b) Fried: slopes are measured at the center of the subaperture and are related to 
4 phases at each corner, (c) Southwell: position of slopes and phase points are same, (d) Hui: Curvature factor was added, (e) Linh: additional slope and other phase 
points was used. 
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illustrated in Fig. 6, the wavefront can be expressed as a set of phase 
points in grid geometry. Each of the nine points form a local domain. To 
reconstruct the height of the center point, Southwell’s algorithm derives 
a relation between the height values and slope data of four surrounding 
points in the two orthogonal directions [9]: 

W − W4

h
=

Sx + S4x

2
(1)  

W5 − W
h

=
S5x + Sx

2
(2) 

Fig. 2. (a) Some wavefront shapes with peak: Zernike polynomials Z− 2
6 and Z0

6. (b) Residual error of wavefront in Fig 2(a).  

Fig. 3. (a) The phase map of wavefront xy and (b) Its residual errors.  
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Fig. 4. Zernike polynomials with: (a) third radial order: Z− 3
3 , Z− 1

3 , Z1
3 and Z3

3 (b) fourth radial order: Z− 4
4 ,Z− 2

4 , Z0
4, Z2

4 and Z4
4 .  
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W − W2

h
=

Sy + S2y

2
(3)  

W7 − W
h

=
S7y + Sy

2
(4)  

where, W and S are the height values and slopes of phase points, 
respectively and h is distance between two phase points. 

Thus, the estimated phase equation can be written as follows [9]: 

f(W) =
W4 + W5 + W2 + W7

4
+

h
8
×

(
S4x − S5x + S2y − S7y

)
(5) 

In Linh’s modified version, the integral equation is expressed as 
follow [17]:  

To reconstruct the original wavefront, we use an iterative technique 
to solve Eq. (6). For best performance, the successive over-relaxation 
(SOR) is performed [22]. Firstly, if the form of equation is written as [9]: 

xn+1 = f(xn), (7)  

we can obtain the SOR solution [9]: 

xSOR
n+1 = (1 − ω)xSOR

n + ωf
(
xSOR

n
)
, (8)  

where ω is the optimal relaxation factor [9]: 

ω =
2

1 + sin[π/(N + 1)]
(9) 

By Taylor theorem, the Eq. (6) can be expressed as [17]:  

Eq. (10) gives us the truncation error in slopes-based wavefront 

reconstruction process is 1
48 O

(
h4
)

. Thus, when the original surface is a 

high order equation, the error will increase, especially for the order 
bigger than 4. In addition, when the surface has peaks, the slope around 
peaks area becomes high slope because of derivative definition. 
Approximation surface area with high slope always has bigger error than 
other parts. Therefore, our idea is reducing the high slope by adding 
some amount to original slope to change it to lower order function which 
we call carrier wavefront. Moreover, the height of slope especially in 
peak area also decreases following the form of selected carrier 
wavefront. 

In this study, we will use this iterative zonal method to execute our 

idea. The details of our proposal are provided in Fig. 7. 
We will select the function xy as a carrier wavefront Wc for two 

reasons. Firstly, its stable reconstruction error because the order of this 
function is smaller than 4. Secondly, there are no peaks found in the 
error distribution map of this function, as shown in Fig. 3. 

Sx, Sy are our input slope measurement data. Then, we normally 
reconstruct the data to obtain the first reconstruction wavefront W: 

f(W) = (1 − ω)WSOR
n + ωf

(
WSOR

n
)
, (11) 

The wavefront adding amount Wa can be calculated as Eq. (12). 

Wa = Wc − W, (12) 

After achieving Wa, its slopes are numerically attained as Sax, Say, 
which is shown in Fig. 8 and Eq. (13), (14). 

Fig. 5. The relative error levels of first 36 term Zernike polynomials.  
Fig. 6. Grid geometry for Zonal algorithms.  

f(W) =
W1 + W3 + W6 + W8

4
+

h
16

×
(
2S4x − 2S5x +2S2y − 2S7y − S8x − S8y + S1x + S1y − S3x + S3y + S6x − S6y

)
. (6)   

f(W) =
(W1 + W3 + W6 + W8)

4
+

h
16

×
(
2S4x − 2S5x +2S2y − 2S7y − S8x − S8y + S1x + S1y − S3x + S3y + S6x − S6y

)
+

1
48

O
(
h4)+ … (10)   
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Fig. 7. Flow chart of our proposed algorithm.  

Fig. 8. Proposed algorithm procedure 1: Added slope Sax, Say is calculated from carrier wavefront Wc and 1st reconstructed wavefront W.  
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Sax =
dWa

dx
, (13)  

Say =
dWa

dy
, (14) 

Sax, Say can be used to estimate the carrier wavefront slope Dx, Dy as 
shown in Eq. (15) and (16). 

Dx = Sx +
dWa

dx
, (15)  

Dy = Sy +
dWa

dy
, (16) 

From Fig. 9 we can see that slope Dx, Dy is smooth and no high slope 
appearing, this can be explained that Dx and Dy now are almost similar 
slope of carrier wavefront xy. In the last step, the wavefront W2 is 
reconstructed before subtracting the added amount Wa, to receive the 
final reconstructed wavefront as illustrated in Fig. 9. At this point, we 
can even continue the algorithm loop to improve the results. 

3. Simulation and experiment results 

3.1. Numerical simulation 

The focus of this section is to verify the performance of the proposed 
algorithm. 

Initially, we used the original wavefront shape presented in Eq. (17) 
as a sample to define the distorted wavefront. 

W = − 10x3 + 30xy2 + 30x5 − 60x3y2 − 90xy4 − 21x7 + 21x5y2

+ 105x3y4 + 63xy6 (17) 

The wavefront shape was demonstrated in Fig. 10 with clear peaks. 
We will use 2 kinds of algorithms to examine the accuracy of the 

proposed technique. Firstly, we reconstruct the wavefront in Eq. (17) 
using the method proposed by Linh and apply our idea to the Linh al-
gorithm. Fig. 11(a) is the residual error of the Linh algorithm and Fig. 11 
(b) is the outcome when we apply the proposed idea. 

The findings indicate that the peak of the residual error disappeared 
in the central area from Fig. 11(b), and the maximum error level was 
also improved, from 1.5 nm to 2 × 10− 3 nm. 

Fig. 9. Proposed algorithm procedure 2: Carrier wavefront slope Dx, Dy is estimated by sum of original slope Sx, Sy and added slope Sax, Say, then final wavefront is 
extracted from difference between reconstructed carrier wavefront W2 and added wavefront Wa. 

Fig. 10. The sample wavefront for simulation.  
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Fig. 11. (a) Residual error of Linh method. (b) Residual error of Linh method after applying proposed algorithm.  
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Fig. 12. (a) Residual error of Hui method. (b) Residual error of Hui method after applying proposed algorithm.  
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In the next simulation we also try to apply the proposed method to 
another type of algorithm. We select one least-square method from Hui 
as the reference. According to the data collected in Fig. 12(a) and (b), the 
error peak was also removed successfully, and the maximum error level 
was reduced from 10 nm to 1.5 nm. From the information gathered, our 
research is compatible with both an iterative method like the Linh al-
gorithm and a least-square method like the Hui algorithm. 

Next, we examine the peak removable efficiency of an algorithm in 
the Zernike order. We utilize the Zernike basis functions numbered by 
Noll [23] as a representative set to describe the sample wavefront. The 
order of the Zernike polynomial set is directly proportional to the degree 
of optical aberrations [24]. In our simulation, we employ the first 36 
Zernike terms with 200 × 200 sampling points and the x, y range from 
−

̅̅
2

√

2 to 
̅̅
2

√

2 . These results are presented in Fig. 13. To compare the accu-
racy of the algorithms, we have estimated the relative root mean square 
error R [16]. R is defined as: 

R = [ΔW/W]
1/2

, (18)  

where W is the original sample wavefront and ΔW is the estimated 
wavefront residual error. 

As depicted in Fig. 13(a), the Linh algorithm exhibits a significant 
increase in relative errors as the order of the Zernike terms is raised, and 
some error peaks are found on each radial order of Zernike polynomials. 
On the other hand, after using the proposed algorithm the error remains 
linear, and it also drops sharply for the higher Zernike terms. For some 
very simple low aberrations such as tilt, using the proposed method did 
not outperform the conventional results, because its errors were always 
small. A matching situation occurred in Fig. 13(b) for the results of the 
Hui algorithm. We observed a desirable outcome when the error was 
much smaller and stable for increasing Zernike radial orders. 

However, speed is a disadvantage of the proposed method. To esti-
mate the speed of the algorithm, we used an iterative algorithm such as 
the Linh algorithm as a reference because of its rapidity and accuracy, 
even with a low performance computer. The information pertaining to 
this result is presented in Fig. 14. 

According to Fig. 14, it is evident that the speed of the proposed 
method is significantly slower compared to the previous algorithm. For 
instance, with iterative method while the previous method took 
approximately 1.7 s to complete the reconstruction process for a 300 ×
300 pixel wavefront, our algorithm required approximately 4 s. And by 
least square method our method costs 10.6 s while the previous method 
took about 5.56 s to reconstruct the 300 × 300 pixel wavefront. This 
disparity in results can be attributed to the fact that our proposed idea 
involves additional steps compared to the previous algorithm. 

Sx = Sx + αP × Sx, (19)  

Sy = Sy + αP × Sy, (20)  

where: P is percentage of input noise and α is a random number belongs 
to [− 1, 1]. 

To examine the impact of noise on the reconstruction algorithm’s 
sensitivity, we applied Gaussian distribution random noise as Eq. (19) 
and (20) ranging from 0 % to 16 % to the original wavefront slopes 
before the reconstruction process. The findings, presented in Fig. 15(a), 
(b) demonstrate that our proposed method has better noise resistance 
than the previous method, even with added noise. Nevertheless, when 
the level of noise surpassed approximately 10 %, the outcomes become 
uncertain. This phenomenon is easily understood because of 10 % 
Gaussian error is big for reconstruction the surface. 

Furthermore, we also examine the noise resistance ability of pro-
posed algorithm for Zernike surface sample. In this simulation we 
applied 8 % Gaussian distribution random noise to slope of Zernike term 
number 3, 6, 9, 14, 25 and 32 which are major influenced by error peaks 
corresponding to radial order from 1 to 6. The results were seen in 

Fig. 13. Comparison of the relative error (a) Linh algorithm and Linh algorithm 
after using our method. (b) Hui algorithm and Hui algorithm after using our 
method. (c) Linh algorithm and Hui algorithm after using our method. 
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Fig. 14. Speed comparison of (a) Linh algorithm before and after using proposed method and (b) Hui algorithm before and after using proposed method.  

Fig. 15. Noise comparison of (a) Linh algorithm before and after using proposed method and (b) Hui algorithm before and after using proposed method.  

Fig. 16. Noise comparison of (a) Linh algorithm before and after using proposed method and (b) Hui algorithm before and after using proposed method for Zernike 
terms with order from 1 to 6. 
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Fig. 16. 
From Fig. 16(a) and (b) we can see that, although the relative error 

has an increasing trend in higher order, the proposed technique still can 
reduce the error in high order Zernike terms if compared to previous 
Linh algorithm. 

3.2. Experimental results 

To analyze the effectiveness of our algorithm, we measured the 
slopes of a deformable mirror using a deflectometry system as shown in 
Fig. 17 and compared the results to our input data of deformable mirror. 
Fig. 18 illustrates the concept of our deflectometer and the corre-
sponding slope output. 

A deflectometry system operates by creating sinusoidal fringe pat-
terns in both horizontal and vertical axes through a computer. These 
patterns are displayed on a screen and projected onto the measurand. A 
camera captures the reflected images from the surface of the target. By 
utilizing additional information obtained from the calibration process, 

the local slopes of the surface of the target can be determined, as 
demonstrated in Fig. 18. In this experiment, deformable mirror was put 
850 mm away from the screen and camera to capture good enough 
quality fringe pattern. we use a 1024 × 768 pixel resolution LCD with 
pixel size 0.24 mm. The used camera in this prototype is 2448 × 2048 
pixel Basler acA2440–20 gm. with the pixel pitch of 3.45 µm. A pattern 
with frequency of 0.5 mm− 1 was used in the LCD screen, the resolution 
of camera is 3.45 µm which is fair enough to prevent Moire patterns 
appearing when frequency in the LCD exceeds the pixel pitch of camera. 
The actuator 5 of deformable mirror was controlled to move 72 μm from 
original position. After that, inputting these slope data from the 
deflectometry in Fig. 18 into the proposed algorithm, the reconstructed 
surface of deformable mirror with our proposed method can be ob-
tained, as shown in Fig. 19(a): 

Fig. 19(a) and (b) provides us the results of the reconstructed surface 
of the deformable mirror, which was measured using deflectometry 
system and process by our proposed method and Linh algorithm, 
respectively. We can clearly realize the effective results of our method in 

Fig. 17. (a) Deformable mirror and our deflectometry in the experiment (b) Actuator position of deformable mirror.  
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the peak position area in Fig. 19(a) compared to previous algorithm in 
Fig. 19(b). The initial input of deformable mirror was 72 μm and our 
proposed method obtained 71.8 μm in the results of peak position while 
Linh algorithm gave 70.09 μm. This proves that our technique can deal 
with the high order wavefront retrieval problem, especially in the peak 
position area. 

4. Conclusions and discussion 

The principle of a novel and very simple wavefront reconstruction 
technique that can be integrated with existing algorithms to effectively 
eliminate error peaks during high-order wavefront retrieval processes 
was presented in this paper. In order to achieve higher accuracy, a 
specific wavefront was utilized as a carrier wavefront for reconstruction. 
This carrier wavefront has stable error, which can neutralize the error 
peaks of high order aberration wavefronts. A detailed flow chart of the 
proposed process is also given. Numerous numerical simulations were 
conducted to demonstrate and assess the performance of the algorithm 
in terms of speed and accuracy. The outcomes surpassed those of prior 
algorithms when reconstructing high order aberrations, but the disad-
vantage is that it requires additional processing time because of the extra 

steps involved. Experimental comparisons were also performed to 
confirm the capabilities of our approach. 

As mentioned above, the algorithm’s lower speed is a disadvantage 
of this study, since adding steps always increases processing time, but 
the results clearly indicate that our proposed method can eliminate 
wavefront error peaks very efficiently. 
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