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Abstract
Evolving demands for compact, light-weight, and versatile optical systems across various industries require the facile integra-
tion of planar diffractive optics. For the manufacturing of diffractive optics, green manufacturing becomes the prerequisite 
with timely considerations of Environmental, Social, and Governance (ESG). Conventional manufacturing processes such 
as semiconductor lithography or nano /micro imprinting utilize a large amount of harmful chemicals. Meanwhile, direct 
laser writing emerges as one of the key solution candidates, offering clear advantages over others, especially in terms of 
eco-friendliness due to the simple manufacturing process with less chemical usage. In this comprehensive review, we present 
recent advances in the analytical design, green manufacturing of electrically tunable smart light-weight planar optics, and 
their promising applications in space optics, photovoltaics, and optical imaging, highlighting the necessity for tunability in 
focal length, aberration, transparency, and beam propagation direction. Various types of electrically tunable diffractive optical 
elements utilizing active modulation of refractive index, geometrical shape, and bandgap have been discussed. Finally, this 
review concludes by proposing the integration of ultra-thin and light-weight diffractive optics presenting potential applica-
tions in micro-electronics, biomedical imaging, space exploration, and extended reality.

Keywords Green manufacturing · Diffractive optical element · Tunable planar optics · Laser direct writing

1 Introduction

1.1  Refractive, Reflective, and Diffractive Optics

Light can be manipulated via refractive, reflective, and 
diffractive optics. Refractive optics rely on the bending of 
light as it passes through materials with different refractive 
indices, such as lenses, to converge or diverge light rays. 
Reflective optics, on the other hand, employ mirrors to redi-
rect light, maintaining its original wavelength and phase. 
Diffractive optics utilize the interference and diffraction of 
light waves, often through periodic structures, to shape and 
manipulate light, enabling devices like diffraction gratings 
and holograms [1–4]. Each of these optical approaches offers 
unique advantages and limitations, making them valuable 
tools in optical design, imaging, and various technological 
applications, depending on the specific requirements of a 
given system.

Diffractive optics exhibit several distinct advantages over 
refractive and reflective optics. One notable strength lies in 
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their ability to achieve substantial reductions in thickness 
and weight. Diffractive elements can replace thick refrac-
tive lenses or bulky reflective mirrors with ultra-thin, light-
weight surfaces that accomplish similar optical functions 
[2, 5, 6]. This characteristic is particularly advantageous in 
applications where space and weight constraints are criti-
cal, such as in aerospace and telecommunications systems. 
Furthermore, diffractive optics offer exceptional versatility 
in terms of optical design, enabling precise control of phase 
and amplitude, which is challenging to achieve with refrac-
tive or reflective components. This versatility makes dif-
fractive optics well-suited for applications like beam shap-
ing, spectral dispersion, and wavefront manipulation [7–9]. 
However, it's important to note that diffractive optics also 
have their limitations, including sensitivity to wavelength 
and limited efficiency, which must be carefully considered 
in their design and implementation.

Meanwhile, metasurfaces, which have recently attracted 
strong attention, also provide additional advantages over 
traditional optics, in terms of thickness, weight, and versa-
tility. Unlike conventional optics, which rely on bulky and 
thick lenses or mirrors, metasurfaces are ultrathin, planar 
structures that manipulate light at the subwavelength scale. 
This property enables a dramatic reduction in thickness and 
weight, making metasurfaces highly desirable for applica-
tions where size and weight constraints are critical, such 
as in miniaturized optical systems and wearable devices 
[10–12]. Metasurfaces also provide precise control over the 
phase, amplitude, and polarization of light, allowing for the 
creation of complex optical functionalities in a single, com-
pact layer. This versatility makes metasurfaces invaluable 
in areas such as beam steering, holography, and flat optics, 
offering a transformative approach to optical design and ena-
bling the development of more compact, lightweight, and 
efficient optical systems [13–15]. However, it's important to 
note that metasurfaces are still subject to challenges, includ-
ing limitations in the operating wavelength range and fabri-
cation complexities that must be addressed for widespread 
adoption in practical applications.

1.2  Green Manufacturing Process for ESG

In the realm of semiconductor manufacturing, planar opti-
cal elements, and flat diffractive optical elements (DOEs) 
undergo fabrication through a series of semiconductor pro-
cesses or traditional cutting methods. The production of 
thin, flat DOEs within the semiconductor industry involves 
a multi-step process that significantly impacts Environmen-
tal, Social, and Governance (ESG) considerations and green 
manufacturing practices.

Typically, in the case of DOEs, intricate patterns rang-
ing from hundreds to several nanometers in size are meticu-
lously created through a repetitive lithography process. 

Materials such as silicon and gallium arsenide, commonly 
used in semiconductor processes, are employed, with a sub-
stantial amount of energy consumed during the production 
of these ingots. The conventional Czochralski growth pro-
cess historically consumed up to 100 kW/h per kilogram 
of silicon ingot produced [16]. However, advancements in 
modern furnace designs, continuous silicon feedstock sup-
ply methods, and improvements in gas flow dynamics have 
significantly reduced this energy consumption to less than 
40 kW/h [16, 17]. Despite these improvements, addressing 
ESG policies remains crucial, particularly as the energy used 
in silicon ingot production often relies on fossil fuels. Con-
tinuous technological developments are essential to further 
minimize energy consumption and align with sustainable 
practices.

The semiconductor manufacturing process demands 
meticulous and sophisticated waste treatment and manage-
ment practices to mitigate the ecological footprint associated 
with compounds such as photoresist, polishing slurry, and 
various etching materials. A prominent South Korean chip 
manufacturing company engaged in mass production utilizes 
over 150 chemical components across more than 450 chemi-
cal products, resulting in an annual consumption of over 
45,000 tons of chemicals [18, 19].

An alternative method for fabricating flat optical elements 
is through traditional subtractive manufacturing. However, 
this approach generates various gases, chemical additives, 
coolants, lubricants, fuel energy, and cutting residues during 
processing. For instance, chlorine-based, fluorine-based, and 
boric acid-based vapors emitted during glass manufacturing, 
along with substances like sodium nitrate, potassium nitrate, 
and sulfate used as oxidizing and reducing agents to control 
glass properties, are considered hazardous substances or 
carcinogens [20].

This traditional manufacturing practice contributes to sig-
nificant environmental damage through the release of haz-
ardous waste and emissions. Coolants and lubricants intro-
duce pollutants that can contaminate water sources, while 
factory emissions contribute to air pollution. The high power 
and energy demand also lead to increased carbon emissions, 
exacerbating climate change. Failing to address these chal-
lenges in traditional manufacturing hinders the industry's 
environmental stewardship [21].

Green manufacturing practices, involving the reduction 
of hazardous substances, optimization of energy usage, and 
the adoption of sustainable materials and recycling, become 
essential to align these technologies with ESG goals. By 
addressing the environmental impact associated with these 
processes, industries can demonstrate their commitment to 
responsible ESG practices and contribute to a more envi-
ronmentally conscious and sustainable future. In the con-
text of ESG considerations, the practices in traditional 
semiconductor and machining processes often conflict with 
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environmental responsibility. To align with ESG principles 
and embrace green manufacturing, a transition to sustain-
able machining technologies and processes is imperative. 
This shift minimizes resource consumption, reduces waste 
generation, and prioritizes energy efficiency in the manu-
facturing of ultra-thin smart optics. Through such efforts, 
industries can mitigate their environmental footprint, adhere 
to ESG commitments, and contribute to a more environmen-
tally sustainable manufacturing landscape.

1.3  Light‑Weight Planar Optics: Key Requirements

Planar optics for photovoltaics, smart windows, and smart 
lighting are highly required, as described in Fig. 1. Light-
weight deployable planar lenses represent a promising 
technological innovation for space satellite applications. 
These planar lenses, which can be compactly stowed dur-
ing launch and then unfurled or deployed in space, offer 

several advantages. They enable the miniaturization of satel-
lite payloads, reducing launch costs and providing increased 
mission flexibility. Deployable planar lenses can be used for 
a variety of purposes, such as enhancing imaging capabili-
ties, enabling compact radar systems, or improving commu-
nication systems by focusing and steering electromagnetic 
waves. Their planar and lightweight design makes them 
well-suited for integration into small satellites or CubeSats. 
The deployment mechanism, materials, and precise control 
systems are key considerations in designing these lenses 
for space deployment. As technology advances and deploy-
ment mechanisms become more reliable, deployable planar 
lenses are likely to find increasing utility in future space 
missions, contributing to more cost-effective and versatile 
satellite systems. Light-weight mobile camera lenses are of 
paramount importance in modern high-performance mobile 
phone cameras, offering portability and versatility in captur-
ing high-quality images and videos. Their manufacturing 

Fig. 1  A) Tunability requirements of tunable DOE including beam 
steering, focal length control, and transmittance control (b) Advan-
tages of laser direct writing (c-h) Applications of tunable DOE. 
(c) Space optics (Adopted from [22] Figure  1) (d) Smart window 

(Adopted from [23], Figure 1) (e) Smart photovoltaics (Adopted from 
[24], Figure 1) (f) Laser machining (Adopted from [25], Figure 3) (g) 
optical metrology (Adopted from [26], Figure 3) (h) Bio application 
(Adopted from [27], Figure 12)
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methods often involve the use of advanced materials like 
plastic and composite elements to reduce weight while main-
taining optical performance. The advantages of lightweight 
mobile camera lenses include improved ease of use, reduced 
strain on device components, and enhanced image stabiliza-
tion. These lenses also contribute to the overall reduction 
in device weight and size, making them indispensable for 
mobile devices where portability and user experience are 
critical. Research efforts are continually focused on devel-
oping novel materials, optical designs, and fabrication tech-
niques to further enhance lightweight lens performance, 
ensuring that mobile cameras continue to meet the demands 
of today's tech-savvy consumers. Thin endoscopic probes 
hold importance for minimally invasive procedures and diag-
nostics in medical applications. Their manufacturing typi-
cally involves the use of advanced materials and precision 
machining techniques to create compact, lightweight, and 
flexible optical systems that can navigate the narrow and tor-
tuous pathways of the human body. The advantages of thin 
endoscopic probe optics include reduced patient discomfort, 
shorter recovery times, and fewer complications compared 
to traditional open surgeries. Moreover, their small size and 
flexibility allow access to previously inaccessible regions 
within the body, facilitating precise imaging, diagnostics, 
and therapeutic interventions. Ongoing research focuses 
on further miniaturization, enhanced imaging capabili-
ties, and integration with other diagnostic and therapeutic 
tools, ensuring that thin endoscopic probe optics continue 
to advance medical practices and improve patient outcomes.

1.4  Tunable Planar Optics: Key Requirements

The smart tunability of ultra-thin optics is crucial for 
their adaptability and versatility in a variety of optical 
applications stated above. Key requirements for tunability 
include the ability to adjust focal length, enabling precise 
focusing and imaging; the control of aberrations, mini-
mizing optical distortions for high-quality imaging; trans-
parency modulation, allowing for dynamic light transmis-
sion adjustments; and the capability to manipulate beam 
propagation angles, facilitating beam steering and redi-
rection [28–32]. Achieving these tunability requirements 
typically involves the integration of advanced materials, 
such as liquid crystal or electroactive polymers, and the 
incorporation of responsive mechanisms, like piezoelec-
tric actuators or voltage-driven devices [33–36]. Meeting 
these requirements empowers ultra-thin optics to address 
a broad range of optical design challenges and adapt to 
dynamic operating conditions, making them valuable 
tools in contemporary optical systems.

2  Design and Fabrication of Diffractive 
Optical Elements

2.1  Design of Diffractive Optical Elements

The design of DOEs conventionally has been pursued 
through an analytic solution-based approach derived from 
the Rayleigh-Sommerfeld diffraction integral [37–40]. 
While this theory offers intuitive solutions for straight-
forward imaging function of the diffractive optics, recent 
demands for various functionalities in DOEs, and the 
requirements for a rapid design process have led to the 
adoption of numerical optimization-based approaches 
to overcome the limitations of the conventional analytic 
solution-based approaches [41–43]. The numerical design 
approach already has been successfully applied to various 
DOEs implementations, such as achromatic imaging DOE, 
multiple elements DOEs, large-scale optics, hybrid optics, 
and photon sieves [44–52].

The numerical design process for DOEs consists of 
three representative steps, including phase optimization, 
pattern generation, and verification, which can be further 
divided into detailed procedures, as shown in Fig. 2(a). 
The phase optimization step involves optimizing phase 
parameters to minimize or maximize merit functions, 
aiming to achieve the optical specifications of the target 
DOE. As shown in Fig. 2(a) (step 1), a continuous phase 
map across the entrance pupil can be generated by using 
polynomials with the function of spatial variables in com-
mercial ray-tracing tools. For the modeling of symmetric 
or asymmetric surface phase, Zemax® provides the sur-
face types of "binary1" and "binary2", respectively [53]. 
These surface types comprise various orders of polynomi-
als with coefficients, which can be optimized to minimize 
merit functions. Subsequently, the optimized phase map 
is applied to a modulo operation concerning 2π, resulting 
in a residual map that corresponds to the kinoform profile, 
as shown in Fig. 2(a) (step 2). The extracted phase map of 
the kinoform is then quantized, as shown in Fig. 2(a) (step 
3), during the DOE pattern generation process. Depending 
on the efficiency requirements and fabrication feasibility, 
threshold values can be set to create either single-level or 
multiple-level patterns. Increasing the number of levels 
can enhance efficiency from 10 to 99% [35]. This pattern 
generation and quantization process allows rapid calcula-
tions by importing the optimized phase map data from 
the ray-tracing software into computation software such 
as MATLAB® or Python®. The performance of the gen-
erated DOE pattern can be verified using physical optics 
propagation (POP) within ZEMAX®, which is based on 
scalar diffraction theory. The POP function allows the 
evaluation of primary optical specifications, such as focal 
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length, f-number, spot size, and depth of focus. Figure 2(b) 
presents the results of imported a 1-inch diameter DOE 
pattern with focal length 80 mm, estimating beam pro-
files depending on propagation distance. In the near-field, 
the DOE pattern transfers directly to the beam profile, 
however as the beam propagates, the beam size gradually 
shrinks, focusing a spot accurately at the 80 mm focal 
length. Beam cross-sections are plotted against propaga-
tion distance, allowing depth of focus evaluation at the 
focal length. Additionally, it clearly reveals side-effects 
such as focusing due to high-order diffraction in the near-
field. For cross-evaluation purposes, Finite-Difference 
Time-Domain (FDTD) software also enables the verifica-
tion of the DOE pattern, as shown in Fig. 2(a) (step 5) [54, 
55]. Additionally, evaluation in the FDTD with a more ver-
satile configuration is available, such as DOE illumination 
with oblique incident angles or sources with divergence 
angles, which is not fully supported in the ray-tracing soft-
ware [53]. Once the design and verification processes are 
completed, the pattern is prepared for fabrication through 
drawing work. The resolution of drawing files, such as gds 
or dwg, is adjusted with accounting for fabrication preci-
sion, and efficiency of the drawing work flow.

Diffractive optics employ micro- or nanostructures etched 
onto a flat surface to control the phase and amplitude of 
incident light waves. This precise control over light wave-
fronts enables ultrathin, planar optical elements capable 
of achieving complex optical functions. Diffractive optics 
offer several advantages over traditional refractive optics, 
including reduced thickness and weight, as well as the abil-
ity to correct chromatic aberrations and implement multi-
functional optical elements. These characteristics make dif-
fractive optics particularly valuable in applications where 
space and weight constraints are critical, such as in compact 
imaging systems and wearable devices, offering a versatile 
and lightweight alternative to traditional refractive optics. 
Ultrathin diffractive optics design encompasses various 
techniques, including the use of Fresnel zone plates, binary 
Fresnel phase plates, and kinoforms, which differ signifi-
cantly from traditional optics design. Fresnel zone plates use 
concentric rings with varying widths to focus light, while 
binary Fresnel phase plates employ discrete phase levels to 
manipulate wavefronts, enabling lightweight and compact 
optical elements. Kinoforms, on the other hand, optimize 
the phase distribution to achieve specific optical func-
tions, minimizing energy loss. These ultrathin designs offer 

Fig. 2  A Design process of DOEs. The comprehensive DOE design 
process consists of 5 steps, incorporating optimization of the surface 
phase, conversion to Kinoform/binary phase, and verification of the 
pattern. Each step utilizes ray-tracing, computational, or finite ele-
ment analysis software as appropriate for precise modeling and opti-
mization. (b) Verification of a diffractive pattern in the design pro-

cess. The designed pattern can be imported for the verification of 
beam propagation characteristics, including amplitude, phase, and 
wavefront, in both near-field and far-field regions by using ray-tracing 
or finite analysis tools. (c) Analytical design and efficiency of refrac-
tive optics and diffractive optics (adopted from [35] Table 1)
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advantages like reduced thickness, weight, and chromatic 
aberrations compared to traditional bulky lenses or mirrors. 
Thus, they are well-suited for applications where size and 
weight constraints are paramount, such as in portable imag-
ing devices, augmented reality displays, and miniaturized 
optical systems, representing a transformative approach to 
optical design and enabling more compact and lightweight 
optical solutions.

2.2  Traditional Manufacturing Methods for DOE

The manufacturing process of thin, flat diffractive optical 
elements (DOEs) in the semiconductor industry involves 
numerous steps that impact ESG considerations and green 
manufacturing practices. Typically, in the case of DOEs, 
aligned patterns ranging from hundreds to several nanom-
eters in size are created through a repetitive lithography pro-
cess. The materials used in DOEs, such as silicon or gallium 
arsenide, are common in semiconductor processes, and the 
production of these ingots consumes vast amounts of energy. 
Additionally, the vacuum environment in which general pho-
tolithography processes occur increases energy consumption 
in the overall process [56–59].

A variety of compounds are employed in actual semi-
conductor manufacturing. Due to security considerations in 
the semiconductor industry, determining the exact compo-
sition of materials is often challenging [60–63]. Neverthe-
less, a range of substances, including resin, photoresist (PR), 
polymer compounds, surfactants, organic acids, organic 
compounds, pigments, and more, are commonly utilized. 
The manufacturing process incorporates a minimum of five 
substances, including sulfuric acid, chromic acid, ethyl-
ene oxide, silica, potassium dichromate, etc., all of which 
fall under Group 1 carcinogens as per the classification by 
the International Agency for Research on Cancer (IARC) 
[64–68]. Additionally, the process may involve the use of 
Group 2B carcinogens, including diborane, carbon black, 
1,4-dioxane, pyrocatechol, antimony trioxide, methyl isobu-
tyl ketone, ethylbenzene, diethanolamine, titanium dioxide, 
lead, dichloromethane, naphthalene, alpha-methyl, styrene, 
1,2-benzenediol, nitrilotriacetic acid, cumene, among others 
[18, 69, 70].

Furthermore, the semiconductor process utilizes sub-
stances such as ethylene oxide and hydroquinone, as well as 
phenol and N-butyl glycidyl ether, all categorized as Group 2 
germ cell mutagens and falling under Group 1B. Reproduc-
tive toxicants in the semiconductor process are categorized 
into different groups. Group 1A includes carbon monoxide 
and lead, whereas Group 1B encompasses 2-ethoxyethanol, 
2-methoxyethanol, ethyl cellosolve acetate, N, N-dimethy-
lacetamide, and sodium tetraborate. Additionally, Group 2 
reproductive toxicants consist of toluene, cyclohexylamine, 
and hexane [18].

Addressing ESG concerns and advancing green manufac-
turing in this context involves exploring alternative materials 
and more environmentally friendly processes [71, 72]. This 
includes investigating sustainable substrates and coatings, 
as well as developing energy-efficient etching techniques, 
such as plasma etching [73]. Additionally, waste reduction 
and recycling efforts can be implemented, and the adop-
tion of green energy sources for manufacturing facilities can 
minimize the carbon footprint associated with the energy-
intensive aspects of the process [57]. Furthermore, research 
into the integration of cleaner and more sustainable fab-
rication methods, such as nanoimprint lithography, holds 
potential for reducing the environmental impact of thin, flat 
DOE production. By taking these steps and embracing green 
manufacturing principles, the semiconductor industry can 
work towards more eco-friendly and sustainable production 
of DOEs, aligning with global efforts to reduce the environ-
mental impact of technology manufacturing.

2.3  Direct Laser Writing

Direct Laser Writing (DLW) has emerged as a forefront 
manufacturing technique, presenting several key advantages 
over precedent methods [74–78]. One of its most noteworthy 
attributes is its green manufacturing profile due to the fac-
ile process and wide selection of materials [79–82]. DLW 
significantly reduces the environmental impact compared to 
methods like photolithography, primarily due to its elimina-
tion of hazardous chemicals [83–85]. Unlike photolithogra-
phy, which relies on photoresists, developers, and etching 
chemicals, DLW is a direct-write process that operates with-
out the need for such environmentally harmful materials. 
It offers a wide range of substrate options including glass, 
textiles, and biomass materials such as wood, leaves, and 
charcoal [5, 86, 87]. By virtue of its chemical-free approach, 
DLW not only reduces waste generation but also minimizes 
the risk of environmental contamination [88–91].

Additionally, DLW systems can be more energy-efficient, 
working with simple manufacturing processes without the 
need for specialized treatments. The facile processing steps 
and the direct utilization of energy from the laser source 
contribute to its energy efficiency [92–97]. Moreover, DLW 
systems can often be operated with lower power require-
ments, further reducing their environmental footprint [98, 
99]. In terms of future developments, ongoing research in 
DLW technology aims to enhance its green manufacturing 
techniques. This includes exploring new materials that are 
more environmentally friendly, optimizing process param-
eters to minimize energy consumption, and integrating DLW 
with other sustainable manufacturing processes. Collabora-
tive efforts between researchers and industry partners are 
driving innovations in DLW technology, guiding the way 
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for even greener and more eco-conscious manufacturing 
processes in the future.

2.4  Nanoimprinting

Nanoimprinting is a nanofabrication technique based on the 
principle of replicating nanoscale patterns from a master 
template onto a substrate. It involves pressing the template, 
containing desired nanostructures, into a soft, moldable 
material that solidifies upon cooling or exposure to UV light, 
resulting in precise replication of nanostructures on the sub-
strate's surface [100–105]. Nanoimprinting offers a greener 
and more eco-friendly alternative to traditional semiconduc-
tor lithography [106–110]. Unlike conventional lithography, 
which often uses hazardous chemicals and energy-intensive 
processes, nanoimprinting generally requires fewer chemi-
cals, emits fewer volatile organic compounds, and consumes 
less energy [111–113].

Additionally, the process can utilize biodegradable or 
recyclable materials, further reducing its environmental 
impact [102]. This enhanced eco-friendliness and reduced 
power consumption make nanoimprinting a promising 
and sustainable choice for nanofabrication, aligning with 

green manufacturing practices and contributing to a more 
energy-efficient and environmentally conscious technologi-
cal landscape [114–117]. Looking ahead, advancements in 
nanoimprinting technology hold promise for even greater 
sustainability gains. Continued research efforts are focused 
on improving process efficiency, exploring novel materials 
with enhanced eco-friendliness, and addressing any remain-
ing challenges in scalability and cost-effectiveness [118]. 
By addressing these aspects, nanoimprinting can further 
solidify its position as a key enabler of green manufacturing 
practices, contributing to a more sustainable technological 
landscape.

3  Electrically‑Tunable Planar Optics

Figures 3, 4, 5, 6, 7, 8, 9 illustrates the principle of tunable 
DOE with optical tuning effect, medium, and the principle of 
operation. Optical tuning can be realized by active modula-
tion of refractive index with liquid crystals, active modula-
tion of geometry of fluid and elastomer, and active modu-
lation of the bandgap of 2D materials. We have discussed 
these cases one-by-one in detail in this forthcoming section.

Fig. 3  Principle of tunable DOE: (a) Optical tuning effect, lens 
medium, and the principle of tunable DOE (a-1) Principle of liquid 
crystal (adopted from [119] Figure 1) (a-2) Principle of modulation 
of shape (adopted from [36] Figure 4) (a-3) Principle of modulation 
of bandgap (adopted from [120] Figure 1) (b) Tunable DOE enabled 

by liquid crystal (adopted from [121] Figure 2) (c) Tunable Fresnel 
zone plate enabled by modulation of shape (adopted from [122] Fig-
ure  2) (d) Modulation of bandgap of terahertz beam (adopted from 
[120] Figure 1)
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3.1  Active Modulation of Refractive Index

The modulation of refractive index by liquid crystal (LC) 
materials is a pivotal technique for achieving electrically 
tunable Diffractive Optical Elements (DOEs) with versatile 
optical functionalities. LCs often exhibit anisotropic optical 

properties due to their orientation-dependent refractive indi-
ces. The principle lies in the ability of LC molecules to align 
themselves under the influence of an external electric field, 
thereby changing the refractive index experienced by inci-
dent light [134–136, 137]. By patterning the alignment of 
LC molecules on substrates and applying an electric field, 

Fig. 4   (a)  Corning’s electrowetting-based liquid lens in a soft vac-
uum setting and Optotune’s pressure-driven liquid lens in a soft 
vacuum setting (Adopted from [123], Figure 4 and 6) (b) 91 element 
hexagonal piston-tip-tilt mirror array with a ~ 4  mm active aper-
ture packaged on controller board. Zernike aberrations were created 
with an array of 61 piston-tip-tilt micromirrors with 27-μm stroke. 
ZEMAX® and experimental layouts of the 4X active optical zoom 
(Adopted from [124], Figure  1, 2, and 10) (c) 0.676  m SiC light-
weight mirror assembly showing the support frame, mirror body, 

passive support, and active support. For clarity, part of the model has 
been cut off along the wave lines. Integrated system on its test plat-
form showing the experimental apparatus of heat and active optics. 
Influence functions of mirror surface in which the piston and tilt have 
been removed, measured with a Fizeau interferometer. (Adopted from 
[22], Figure 1, 6, and 9) (d) Four different configurations of shadow-
casters and detectors were leveraged in the payload. CONFIG-3 and 
CONFIG-4 contained Fresnel zone plates as shadow-casters (Adopted 
from [125], Figure 2)

Fig. 5  Smart photovoltaic applications (a) enhanced light-harvesting in photovoltaic devices enabled by gratings (Adopted from [126], Figure 1) 
(b) light management to optimize the photovoltaics (Adopted from [127], Figure 2)
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precise control over the phase and amplitude of light pass-
ing through the LC layer can be achieved. This dynamic 
modulation enables the creation of electrically tunable DOEs 
[138–141]. The applications of LC-based DOEs are diverse 
and impactful. One prominent application is in adaptive 
optics, where LC-based DOEs are used to correct atmos-
pheric distortions in astronomical observations, enabling 

the capture of sharper images of celestial objects. In free-
space optical communication, these DOEs facilitate beam 
steering, allowing for rapid and precise redirection of laser 
beams for point-to-point communication and data transfer 
[142–146]. Additionally, LC-based DOEs find use in vari-
able-focus lenses for imaging devices, such as smartphones 
and digital cameras, providing dynamic and rapid focusing 

Fig. 6  Smart window and light (a) Solar radiation transmittance control for effective heating (Adopted from [128], Figure 1) (b) Effective light 
management for harvesting enabled by transmittance and diffusion control (Adopted from [129], Figure 5 and 6)

Fig. 7  DOE applications for laser machining (a) Beam splitting enabled by DOE for effective nanofabrication of Ag film (Adopted from [25], 
Figure 3) (b) Beam shaping accomplished by DOE for effective laser welding of aluminum alloy (Adopted from [130], Figure 1)
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capabilities. Moreover, LC-based DOEs are essential in 
emerging technologies like augmented reality (AR) and 
virtual reality (VR) headsets, where they enable adjustable 
optical elements to achieve immersive and comfortable user 
experiences. LC-based beam steering is valuable in lidar 
systems for autonomous vehicles, enhancing 3D mapping 
and obstacle detection [147–150]. Furthermore, LC-based 
DOEs have applications in tunable spectral filters, spatial 
light modulators, and holography, contributing to advance-
ments in spectroscopy, optical signal processing, and 3D 
display technologies [21].

3.2  Active Modulation of Geometrical Shape

The modulation of geometrical shapes in tunable Diffractive 
Optical Elements (DOEs) represents a versatile approach 
for dynamic control over optical wavefronts and beam 
manipulation. This modulation is achieved through two pri-
mary methods: adjusting the gap between the DOE zones 
or dynamically changing the surface shape. The principle 
of gap modulation involves altering the spacing between 
adjacent DOE elements, effectively changing the phase 
delay experienced by incident light. Alternatively, dynamic 

Fig. 8  DOEs for effective optical metrology (a) Dynamic beam-
steering by a pair of rotating diffractive elements to control viewing 
direction on camera (Adopted from [26], Figure  1 and 3) (b) DOE 

exploited for achromatic extended-depth-of-field imaging (Adopted 
from [131], Figure 1, 3, and 5)
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surface shape modulation encompasses physically deform-
ing the DOE surface to induce desired phase shifts, enabling 
real-time optical adjustments. For the medium employed in 
these tunable DOEs, elastomers and fluids are preferred 
alternatives due to their ease of actuation and deforma-
tion capabilities. Elastomers exhibit mechanical flexibility, 
enabling precise shape changes with minimal energy input. 
Fluids, on the other hand, provide adaptability to external 
forces and can be readily manipulated for shape modulation. 
Various actuation mechanisms can be employed to drive the 
tunable DOEs. These include Dielectric Elastomer Actua-
tors (DEAs), piezoelectric elements, external fluid pumps, 
electromagnetic actuation, electrostatic actuation, and elec-
trothermal effects. DEAs offer rapid and reversible deforma-
tions when subjected to an electric field, making them suita-
ble for real-time optical adjustments. Piezoelectric elements 
provide precise and predictable shape changes in response 
to voltage inputs, ensuring accurate optical control. External 

fluid pumps introduce controlled pressure changes to deform 
the DOE surface. Electromagnetic, electrostatic, and electro-
thermal actuation methods leverage electromagnetic fields, 
electric charges, and thermal effects, respectively, to induce 
surface deformations, offering diverse options for achieving 
tunable DOEs. Applications of these tunable DOEs facilitate 
multiple domains, including adaptive optics for astronomical 
observations, beam shaping and steering in laser processing, 
variable-focus lenses in imaging devices, and reconfigurable 
optical systems for telecommunications.

3.3  Active Modulation of the Material Bandgap

Graphene, known for its exceptional electrical, optical, and 
mechanical properties, serves as an electrically controlled 
THz modulator through bandgap modulation. Its optical 
absorption behavior includes dominant interband transi-
tions in the optical and near-infrared spectrum, along with 

Fig. 9  a, b, c) Anterior segment OCT images for different electrical 
tunable lens (ETL) current values (focus position indicated by yellow 
triangle) and (d) composite image generated by stacking cross-sec-
tions with 50 different foci (Adopted from [132], figure 5) Image of 
100 nm fluorescent beads acquired by confocal microscopy (e) before 
and (f) after correction of sample-induced aberration using a spa-
tial light modulator (SLM). Stimulated emission depletion (STED) 

microscopy images with (g) correction to the excitation beam only 
and (h) correction to both excitation and depletion beam paths. (i) 
Axial line profiles of dashed boxes in (g) and (h) in the horizontal 
direction (Adopted from [133], figure  4) (j) Schematic illustration 
and (k) picture of the endoscopic OCT probe with a microfluidic lens 
(Adopted from [27], figure 12)
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intraband transitions in the far-infrared and terahertz range. 
This versatility allows graphene to find applications in vari-
ous terahertz technologies, enabling modulation, detection, 
and ultrafast carrier recombination. Notably, the material's 
optical response can be dynamically tailored by adjusting its 
Fermi level through electrical, optical, or chemical means. 
By leveraging the field-effect configuration in semiconduc-
tors, graphene enables precise control of electron and hole 
concentrations, with the choice of gate dielectric signifi-
cantly impacting the operational speed of the device.

These electrically controlled modulators offer a means to 
observe and manipulate changes across the THz spectrum. 
In one such instance, Sensale-Rodriguez et al. demonstrated 
a tunable terahertz modulator using monolayer graphene 
based on intraband absorption [120]. The device achieved 
a spectrally-flat intensity modulation of approximately 15% 
in the frequency range of 570–630 GHz with an insertion 
loss of about 0.2 dB and a modulation frequency of around 
20 kHz, surpassing the performance of AlGaAs/GaAs-based 
devices. Modifications using a reflection geometry further 
enhanced the modulation depth to approximately 64% with 
an insertion loss of roughly 2 dB. The back-gate electrode's 
role as a reflecting layer enabled enhanced modulation depth 
at room temperature. In another study, Ju et al. showcased 
the potential of graphene in terahertz modulation through 
tunable plasmons in patterned graphene nanoribbons [151]. 
Their work emphasized the material's capability to couple 
terahertz waves into subwavelength charge-density oscil-
lations with polarization-sensitive behavior. Additionally, 
Lee et al. introduced a graphene-metamaterial integrated 
device capable of both amplitude and phase modulation, 
achieving a maximum amplitude modulation depth of 47% 
at resonance [152]. The use of multilayer graphene (MLG) 
film further increased the modulation depth, showcasing the 
practical application of these electrically controlled modula-
tors in observing and manipulating changes across the THz 
spectrum.

With advancements in amplitude and phase modulation, 
and the establishment of multidimensional arrays, terahertz 
spatial modulators can now effectively adjust focal length, 
enable beam steering, and facilitate wavefront shaping. This 
breakthrough is underpinned by the utilization of graphene 
for the electric control of the bandgap, thus enabling spatial 
modulation. Various techniques, including chemical doping 
and external bias voltage, have been instrumental in achiev-
ing substantial modulation depths. For instance, one method 
involved the segmentation of graphene into a 4 × 4-pixel 
array utilizing oxygen plasma, resulting in a notable 50% 
modulation depth with voltage variations [153]. Further-
more, the application of an ionic liquid electrolyte gating 
technique led to the development of a transmissive graphene 
spatial light modulator (SLM) capable of achieving an 
impressive modulation depth of 80% at 1 THz, maintaining 

10% at 1 kHz [154]. Similarly, a graphene metasurface dem-
onstrated the potential for dynamic phase modulation along-
side variations in carrier concentration, enabling dynamic 
beam scanning at 0.98 THz through precise bias distribution 
[155]. Despite challenges associated with the production of 
large-area and uniform graphene films, the prospects for uti-
lizing graphene as a spatial modulator remain exceptionally 
promising.

4  Representative Applications of Tunable 
Planar Optics

In this chapter, the six potential applications of tunable pla-
nar optics have been discussed, particularly space optics, 
smart photovoltaics, smart window, laser machining, optical 
metrology, and biomedical imaging.

4.1  Space optics

Application in space typically requires more endeavors than 
on the ground. The same has been applied to the tunable 
planar optics. The harsh space environment has hindered its 
active implementations despite its potential to benefit vari-
ous space technologies. The optical elements must endure 
adversarial space environments, such as vacuum, radiation, 
and dynamic temperature cycles. However, as inter-satel-
lite optical communication has drawn attention and small 
satellites are prevalent more than ever, tunable optics have 
been researched for application in space. Compared to con-
ventional optical communication payloads, which require 
volumetric mechanical actuators for beam steering, tunable 
optics can usher into optical communication in small sat-
ellites. The authors of [123] demonstrated that the liquid 
lens could endure the vacuum environment. Two types of 
commercial-off-the-shelf liquid lenses were confirmed to 
operate normally in a soft vacuum environment. Specifically, 
an electrowetting-type liquid lens demonstrated almost iden-
tical performance under the harsh environment as in ambi-
ent conditions. While a pressure-driven liquid lens initially 
experienced air bubbles, it ultimately performed similarly to 
ambient conditions after several weeks in the vacuum. The 
experiment results allude to its possibility of being adopted 
in space technologies. Since the properties of diffractive pla-
nar optics could become advantages in the space develop-
ment field, diffractive optics have been applied to imaging 
systems of satellites or surveyors. For common refractive 
optics, it is essential to increase the diameter of the lens 
for capturing high-resolution images. However, increased 
mass and volume of optics require higher launch costs. To 
reduce the weight and the volume of optics and achieve a 
speedy system, an alternative method that replaces moving 
optics by conventional gimbals with light-weight carbon 
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fiber reinforced polymer (CFRP) variable radius-of-curva-
ture mirrors (VRMs) and MEMS deformable mirrors (DMs) 
was proposed [124]. Just by operating the actuation of the 
mirrors, the focal lengths and the magnification of the entire 
system can be adjusted without huge movement of conven-
tional mechanical parts. With an experimental setup that 
consists of micromachined deformable membrane mirrors 
and static spherical mirrors, the entire system achieved 4X 
magnification with an increase of resolution of 2X by adjust-
ing the actuation of mirrors. Since lightweight thin planar 
optics lack structural stability and rigidity, they are easily 
affected and corroded by hazard space environments. Active 
optics with segment mirrors can instead be used to com-
pensate for deformation induced by gravity and to correct 
low-order aberrations because of temperature change and 
gravity gradient [22]. To realize active optics, many kinds 
of actuation are being developed, one of the examples is 
using a whiffletree-supported mirror. A prototype of 0.676 m 
diameter is supported by 9 axial and 3 lateral supports, and 
they serve as hard points. Also, the locations of 9 actuators 
are selected by solving least squares considering the defor-
mation of mirrors measured by the Fizeau interferometer 
and bonding interface between mirror and supports. Actua-
tors act along the optical axis of mirrors as push–pull style 
actuators do. Several tests for correcting gravity-gradient 
and thermal change are conducted and some Zernike terms 
(which represent deformation on the unit disk) are corrected 
by actuators. Follow-up research is progressing to correct 
more Zernike terms. The results from the performance test 
promise the ability of such hybrid support to compensate 
for unexpected deformation and validation of space-active 
optics. Diffractive Optical Elements (DOEs) are utilized 
for observing astrophysical phenomena, including but not 
limited to solar flare observations. For example, aboard the 
CORONAS-PHOTON satellite, the RT-2/CZT payload was 
launched into Low Earth Orbit (LEO) in 2009 [125]. Four 
configurations constituted the payload, two of which used 
Fresnel Zone Plates (FZPs). Along with a Cadmium Zinc 
Telluride (CZT) and a Complementary Metal Oxide Semi-
conductor (CMOS) as detectors, the FZPs were leveraged 
as shadow-casters for indirect imaging that enables imaging 
of solar flares in hard X-rays. The simulation demonstrated 
that the configuration of dual FZPs and a CMOS detector 
could accomplish an angular resolution of 54 arcseconds 
with a field-of-view of 4.29 degrees. The performance was 
sufficient to embrace the full Sun with the finest angular 
resolution among the four configurations.

4.2  Smart Photovoltaics

Diffractive Optical Elements (DOEs) are widely utilized 
to revolutionize the field of smart photovoltaics, offering 
a dynamic solution for optimizing solar energy harvesting. 

These versatile optical elements enable several key func-
tionalities, including dynamic light management within 
solar panels and concentrator photovoltaic systems [126, 
156–161]. By precisely adjusting the optical properties 
of the DOE, such as focal length, phase profile, or diffrac-
tion pattern, incident sunlight can be expertly steered and 
concentrated onto photovoltaic cells. This enhances energy 
collection, particularly in scenarios where sunlight angles 
vary or sun tracking isn't practical [24, 127, 128, 162–165]. 
Additionally, tunable DOEs can control the spectral distribu-
tion of light, customize the photovoltaic response, improve 
optical efficiency, and selectively filter out unwanted com-
ponents. They also play a pivotal role in adaptive solar track-
ing, ensuring optimal energy conversion. These capabilities 
make electrically tunable DOEs a promising technology for 
the advancement of smart photovoltaic systems and the effi-
cient utilization of renewable solar energy.

4.3  Smart Window

Smart windows constitute a critical frontier in the field of 
building technologies, necessitating specific requirements, 
offering notable advantages, and inspiring evolving research 
trends. These windows must possess precise and rapid tun-
ability over their optical properties, enabling dynamic con-
trol of light transmission, solar heat gain, and privacy levels. 
DOEs can offer a versatile and transformative solution for 
smart window applications. These DOEs can dynamically 
control the transmission and scattering of light, enabling a 
range of benefits. They allow for precise regulation of light 
and heat entering buildings, enhancing comfort and energy 
efficiency [166, 167]. Variable light transmission and glare 
reduction ensure occupants can tailor natural lighting while 
mitigating discomfort from excessive brightness. Privacy 
control is customizable, with the DOE altering its diffrac-
tion pattern to provide both privacy and diffused natural 
light [168, 169]. Moreover, energy-efficient heating, cool-
ing, and lighting systems are optimized through real-time 
adjustments, contributing to reduced energy consumption 
and lower utility costs. Adaptive daylighting solutions and 
security features enhance overall building functionality 
and occupant well-being. Additionally, the integration of 
energy harvesting capabilities further enhances the energy 
efficiency of smart windows [170–172]. These combined 
advantages make electrically tunable DOEs a pivotal tech-
nology for smart building designs and energy-conscious 
environments.

Furthermore, energy-efficient smart lighting necessi-
tates the integration of high-efficiency light sources, such 
as LEDs, and advanced directional light-control technolo-
gies to optimize energy consumption and lighting quality 
[173, 174]. Advantages encompass substantial energy sav-
ings, prolonged luminaire lifespan, improved visual comfort, 
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and potential health and well-being benefits through tun-
able color temperature and intensity. Current research trends 
focus on enhancing the energy efficiency of smart lighting 
by developing novel materials, such as perovskite-based 
LEDs, and integrating IoT (Internet of Things) connectiv-
ity for real-time monitoring and control [129, 175–177]. 
Additionally, research is exploring human-centric lighting 
solutions that consider circadian rhythms and user prefer-
ences, driving the evolution of energy-efficient smart light-
ing toward more sustainable and user-centric illumination 
strategies in various applications, from homes to commercial 
spaces.

4.4  Laser Machining

Electrically tunable Diffractive Optical Elements (DOEs) 
have become an indispensable property in the realm of 
laser machining, significantly expanding the capabilities of 
laser-based manufacturing processes. These versatile opti-
cal elements offer a wide range of advantages that enhance 
precision, productivity, and energy efficiency across vari-
ous applications. One of the key roles of tunable DOEs 
in laser machining is beam shaping. They can reshape the 
typically Gaussian beam profiles generated by lasers into 
desired intensity distributions, such as top-hat or donut 
shapes. This transformation ensures uniform energy deliv-
ery to the workpiece, resulting in consistent and high-qual-
ity machining outcomes. Whether it's cutting, engraving, 
or surface treatment, the ability to precisely tailor the laser 
beam profile is invaluable [130, 178–182]. Beam splitting 
is another crucial function facilitated by tunable DOEs. 
These optical elements allow a single laser beam to be split 
into multiple beams with precise control over their distri-
bution. This capability is especially beneficial for parallel 
processing, where multiple workpieces or features can be 
machined simultaneously, significantly improving produc-
tivity and throughput [25, 183–185]. Furthermore, tunable 
DOEs offer the advantage of focal length control without the 
need for physical adjustments in the distance between the 
laser source and the workpiece. This dynamic focal length 
modification proves particularly useful in scenarios where 
different machining tasks require varying focus settings. 
It simplifies and streamlines the machining process while 
maintaining precision [119, 122, 186]. Real-time dynamic 
beam steering is another hallmark feature of tunable DOEs, 
allowing for the precise control of laser beam direction by 
adjusting phase shifts across the surface of the DOE. This 
dynamic beam steering capability is valuable in material 
ablation and cutting processes, especially in applications 
where rapid and precise beam positioning is essential for 
achieving intricate patterns or complex geometries [26, 187]. 
Moreover, these DOEs provide a high level of customiza-
tion and flexibility, accommodating various laser machining 

tasks and seamlessly integrating into different laser systems, 
thereby meeting the diverse needs of contemporary laser-
based manufacturing.

4.5  Optical Metrology

Electrically tunable Diffractive Optical Elements (DOEs) 
have established themselves as indispensable tools in the 
field of optical metrology, offering an extensive range of 
capabilities that enhance precision, versatility, and adapt-
ability in a wide array of applications. Dynamic focusing 
is one of the primary functions that tunable DOEs excel 
at in optical metrology. They empower users with dynamic 
control over the focus and depth of field of laser beams, 
a crucial aspect for metrology applications that involve 
the measurement of 3D surfaces or complex geometries 
[188–190]. By carefully adjusting the DOE, the laser focus 
can be meticulously tailored to different surface profiles, 
ensuring that measurements are not only precise but also 
highly accurate, regardless of the intricacies of the target 
surface. Additionally, tunable DOEs facilitate high-preci-
sion laser interferometry, supporting distance, displacement, 
and vibration measurements. They play a key role in surface 
defect detection, projecting structured light for identifying 
flaws and irregularities [131, 191]. These DOEs contribute 
to accurate distance measurements in laser distance systems 
and enhance surface roughness assessment. In non-destruc-
tive testing, they assist in generating controlled laser-induced 
ultrasonic waves [26, 192, 193]. Their adaptability and real-
time adjustments make them valuable in dynamic metrology 
tasks, promising continued advancements in the field.

4.6  Biomedical Imaging

Tunable optics, which allow for real-time control of optical 
parameters, have found diverse applications in bio-imaging. 
From optical coherence tomography (OCT) to super-resolu-
tion microscopy, their ability to manipulate focal planes and 
enhance imaging quality has greatly enhanced our under-
standing of biological structures and functions [132, 133, 
194–196]. In particular, endoscopic OCT, with its potential 
for diagnosing luminal organs such as arteries and esophagus 
[197, 198], faces technical challenges due to its static and 
limited depth of field. To address these limitations, research-
ers have explored methods to dynamically control the focal 
length of optics [199, 200]. A notable example is the use of 
tunable microfluidic lenses [27, 201]. These lenses adjust 
their focal length dynamically by manipulating the shape 
of a liquid-filled chamber, providing a compact alternative 
to traditional, bulky lens systems. Nevertheless, introduc-
ing microfluidic lenses to endoscopic instruments presents 
challenges, including manufacturing complexity, durability, 
and precise control of lens properties. Additionally, there is 
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growing interest in incorporating micro-electro-mechanical 
systems (MEMS) into endoscopic instruments [202–204]. 
While MEMS technology allows for miniaturized optical 
components with dynamic capabilities in line with the goals 
of tunable optics, it also encounters issues related to manu-
facturing complexity and cost-effectiveness. Tunable planar 
optics emerge as a promising alternative that might effec-
tively address these obstacles. The flat and flexible struc-
ture of the tunable planar optics simplifies manufacturing 
processes and reduces production costs. Moreover, these 
optics can offer precise control of optical parameters, thus 
making them suitable for dynamic adjustments during endo-
scopic procedures. Consequently, the substitution of tradi-
tional bulky optics with thin and light-weight tunable planar 
counterparts can make endoscopic devices more agile, less 
invasive, and ultimately more patient-friendly.

5  Summary and Future Prospects

This review has investigated the design, green manufac-
turing, and application of electrically-tunable smart light-
weight planar optics. Direct laser writing, with its distinct 
advantages, emerges as a key technique that minimizes 
the environmental impact compared to traditional meth-
ods, aligning with the growing emphasis on sustainability 
in manufacturing. DLW offers design flexibility, enabling 
precise control and various designs for tunable Diffractive 
Optical Elements (DOE). Its facile process eliminates the 
need for multiple steps and hazardous chemicals, signifi-
cantly reducing environmental impact. DLW's chemical-
free, energy-efficient operation aligns perfectly with green 
manufacturing principles, making it an ideal choice for sus-
tainable fabrication of tunable DOE. Moreover, electrically-
tunable planar optics can be realized by active modulation 
of refractive index, geometrical shape, and bandgap. The 
capability to tailor these optical elements’ focal length, aber-
ration, transparency, and beam propagation angle is opening 
up new possibilities in space optics, photovoltaics, mobile 
phone lenses, and beyond.

In moving toward the future, the evolution of electrically-
tunable smart lightweight planar optics hinges on three 
crucial avenues for exploration. Firstly, there is a need to 
broaden the spectrum of modulation materials, expanding 
beyond the current candidates such as graphene,  MoS2, and 
MXene [205–209]. This exploration should consider mate-
rials not only for their tunability but also for compatibil-
ity with eco-friendly manufacturing processes. Secondly, 
the refinement of modulation techniques, encompassing 
advancements in precision, efficiency, and scalability, is 
essential for electrically-tunable planar optics. Lastly, the 
practical application of tunable diffractive optical ele-
ments (DOEs) across diverse fields, from space optics to 

biomedical imaging, requires research regarding real-world 
implementations. By addressing these requirements, this 
research field can be impelled forward, unlocking the full 
potential of tunable DOEs and facilitating a new era of ver-
satile and sustainable optical solutions.
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